Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 987: 115-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475672

RESUMO

Cytochromes P450 from eukaryotes and their native redox partners cytochrome P450 reductases both belong to the class of monotopic membrane proteins containing one transmembrane anchor. Incorporation into the lipid bilayer significantly affects their equilibrium and kinetic properties and plays an important role in their interactions. We describe here the detailed protocols developed in our group for the functional self-assembly of mammalian cytochromes P450 and cytochrome P450 reductases into Nanodiscs with controlled lipid composition. The resulting preparations are fully functional, homogeneous in size, composition and oligomerization state of the heme enzyme, and show an improved stability with respect to P420 formation. We provide a brief overview of applications of Nanodisc technology to the biophysical and biochemical mechanistic studies of cytochromes P450 involved in steroidogenesis, and of the most abundant xenobiotic-metabolizing human cytochrome P450 CYP3A4.


Assuntos
Membrana Celular/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nanoestruturas , Nanotecnologia/métodos , Membrana Celular/química , Ligação Proteica
2.
Methods Mol Biol ; 875: 375-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22573452

RESUMO

Cryogenic radiolytic reduction is one of the most straightforward and convenient methods of generation and stabilization of reactive iron-oxygen intermediates for mechanistic studies in chemistry and biochemistry. The method is based on one-electron reduction of the precursor complex in frozen solution via exposure to the ionizing radiation at cryogenic temperatures. Such approach allows for accumulation of the fleeting reactive complexes which otherwise could not be generated at sufficient amount for structural and mechanistic studies. Application of this method allowed for characterizing of peroxo-ferric and hydroperoxo-ferric intermediates, which are common for the oxygen activation mechanism in cytochromes P450, heme oxygenases, and nitric oxide synthases, as well as for the peroxide metabolism by peroxidases and catalases.


Assuntos
Temperatura Baixa , Sistema Enzimático do Citocromo P-450/química , Heme/química , Oxigênio/química , Análise Espectral , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Cinética , Oxirredução
3.
J Inorg Biochem ; 108: 150-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22244217

RESUMO

The superfamily of cytochrome P450s forms a large class of heme monooxygenases with more than 13,000 enzymes represented in organisms from all biological kingdoms. Despite impressive variability in sizes, sequences, location, and function, all cytochrome P450s from various organisms have very similar tertiary structures within the same fold. Here we show that systematic comparison of all available X-ray structures of cytochrome P450s reveals the presence of two distinct structural classes of cytochrome P450s. For all membrane bound enzymes, except the CYP51 family, the beta-domain and the A-propionate heme side chain are shifted towards the proximal side of the heme plane, which may result in an increase of the volume of the substrate binding pocket and an opening of a potential channel for the substrate access and/or product escape directly into the membrane. This structural feature is also observed in several soluble cytochrome P450s, such as CYP108, CYP151, and CYP158A2, which catalyze transformations of bulky substrates. Alternatively, both beta-domains and the A-propionate side chains in the soluble isozymes extend towards the distal site of the heme. This difference between the structures of soluble and membrane bound cytochrome P450s can be rationalized through the presence of several amino acid inserts in the latter class which are involved in direct interactions with the membrane, namely the F'- and G'-helices. Molecular dynamics using the most abundant human cytochrome P450, CYP3A4, incorporated into a model POPC bilayer reveals the facile conservation of a substrate access channel, directed into the membrane between the B-C loop and the beta domain, and the closure of the peripheral substrate access channel directed through the B-C loop. This is in contrast to the case when the same simulation is run in buffer, where no such channel closing occurs. Taken together, these results reveal a key structural difference between membrane bound and soluble cytochrome P450s with important functional implications induced by the lipid bilayer.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Proteínas de Membrana/química , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
4.
Methods Enzymol ; 464: 211-31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19903557

RESUMO

Self-assembled phospholipid bilayer Nanodiscs have become an important and versatile tool among model membrane systems to functionally reconstitute membrane proteins. Nanodiscs consist of lipid domains encased within an engineered derivative of apolipoprotein A-1 scaffold proteins, which can be tailored to yield homogeneous preparations of disks with different diameters, and with epitope tags for exploitation in various purification strategies. A critical aspect of the self-assembly of target membranes into Nanodiscs lies in the optimization of the lipid:protein ratio. Here we describe strategies for performing this optimization and provide examples for reconstituting bacteriorhodopsin as a trimer, rhodopsin, and functionally active P-glycoprotein. Together, these demonstrate the versatility of Nanodisc technology for preparing monodisperse samples of membrane proteins of wide-ranging structure.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Biológicos , Nanoestruturas/química , Fosfolipídeos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Bacteriorodopsinas/química , Cristalografia por Raios X , Camundongos , Fosfatidilcolinas/química
5.
J Thromb Haemost ; 7 Suppl 1: 169-72, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19630793

RESUMO

The clotting cascade requires the assembly of protease-cofactor complexes on membranes with exposed anionic phospholipids. Despite their importance, protein-membrane interactions in clotting remain relatively poorly understood. Calcium ions are known to induce anionic phospholipids to cluster, and we propose that clotting proteins assemble preferentially on such anionic lipid-rich microdomains. Until recently, there was no way to control the partitioning of clotting proteins into or out of specific membrane microdomains, so experimenters only knew the average contributions of phospholipids to blood clotting. The development of nanoscale membrane bilayers (Nanodiscs) has now allowed us to probe, with nanometer resolution, how local variations in phospholipid composition regulate the activity of key protease-cofactor complexes in blood clotting. Furthermore, exciting new progress in solid-state NMR and large-scale molecular dynamics simulations allow structural insights into interactions between proteins and membrane surfaces with atomic resolution.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea , Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo
6.
Biochemistry ; 47(18): 5156-67, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18407660

RESUMO

Ultrafast laser spectroscopy techniques are used to measure the low-frequency vibrational coherence spectra and nitric oxide rebinding kinetics of Caldariomyces fumago chloroperoxidase (CPO). Comparisons of the CPO coherence spectra with those of other heme species are made to gauge the protein-specific nature of the low-frequency spectra. The coherence spectrum of native CPO is dominated by a mode that appears near 32-33 cm(-1) at all excitation wavelengths, with a phase that is consistent with a ground-state Raman-excited vibrational wavepacket. On the basis of a normal coordinate structural decomposition (NSD) analysis, we assign this feature to the thiolate-bound heme doming mode. Spectral resolution of the probe pulse ("detuned" detection) reveals a mode at 349 cm(-1), which has been previously assigned using Raman spectroscopy to the Fe-S stretching mode of native CPO. The ferrous species displays a larger degree of spectral inhomogeneity than the ferric species, as reflected by multiple shoulders in the optical absorption spectra. The inhomogeneities are revealed by changes in the coherence spectra at different excitation wavelengths. The appearance of a mode close to 220 cm(-1) in the coherence spectrum of reduced CPO excited at 440 nm suggests that a subpopulation of five coordinated histidine-ligated hemes is present in the ferrous state at a physiologically relevant pH. A significant increase in the amplitude of the coherence signal is observed for the resonance with the 440 nm subpopulation. Kinetics measurements reveal that nitric oxide binding to ferric and ferrous CPO can be described as a single-exponential process, with rebinding time constants of 29.4 +/- 1 and 9.3 +/- 1 ps, respectively. This is very similar to results previously reported for nitric oxide binding to horseradish peroxidase.


Assuntos
Ascomicetos/enzimologia , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Sítios de Ligação , Cinética , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ligação Proteica , Análise Espectral , Análise Espectral Raman , Fatores de Tempo
7.
J Am Chem Soc ; 126(11): 3477-87, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15025475

RESUMO

Using a recently described self-assembly process (Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Nano Letters 2002, 2, 853-856), we prepared soluble monodisperse discoidal lipid/protein particles with controlled size and composition, termed Nanodiscs, in which the fragment of dipalmitoylphosphatidylcholine (DPPC) bilayer is surrounded by a helical protein belt. We have customized the size of these particles by changing the length of the amphipathic helical part of this belt, termed membrane scaffold protein (MSP). Herein we describe the design of extended and truncated MSPs, the optimization of self-assembly for each of these proteins, and the structure and composition of the resulting Nanodiscs. We show that the length of the protein helix surrounding the lipid part of a Nanodisc determines the particle diameter, as measured by HPLC and small-angle X-ray scattering (SAXS). Using different scaffold proteins, we obtained Nanodiscs with the average size from 9.5 to 12.8 nm with a very narrow size distribution (+/-3%). Functionalization of the N-terminus of the scaffold protein does not perturb their ability to form homogeneous discoidal structures. Detailed analysis of the solution scattering confirms the presence of a lipid bilayer of 5.5 nm thickness in Nanodiscs of different sizes. The results of this study provide an important structural characterization of self-assembled phospholipid bilayers and establish a framework for the design of soluble amphiphilic nanoparticles of controlled size.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Proteínas/química , Clonagem Molecular , Nanotecnologia/métodos , Engenharia de Proteínas/métodos , Estrutura Secundária de Proteína , Proteínas/genética , Espalhamento de Radiação , Raios X
8.
Biochem Soc Trans ; 31(Pt 3): 516-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773147

RESUMO

The catalytic schemes of a variety of haem enzymes, including the P450 mono-oxygenases, consist of a number of common reactive haem-oxygen adducts. The characterization of these intermediates by optical and EPR spectroscopies has reinforced the similarity of these intermediate states in a number of haem enzyme systems. Furthermore, the reactivity of these states in P450 and horseradish peroxidase, in which multiple potent oxidants are formed, provides a paradigm for many other haem enzymes.


Assuntos
Heme/metabolismo , Oxigênio/metabolismo , Catálise , Cinética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/metabolismo , Esteroide 21-Hidroxilase/metabolismo
9.
Biochim Biophys Acta ; 1595(1-2): 277-82, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11983402

RESUMO

A method was developed to investigate the stability of protein-nucleic acid complexes using hydrostatic pressure during electrophoretic gel mobility shift analysis. The initial system probed by this technique was the well-characterized cognate BamHI-DNA complex. Band shift analysis at several elevated pressures found the equilibrium dissociation (K(d)) constant to be dependent on pressure, which allowed the volume change of dissociation (deltaV) to be calculated. In order to describe the effects of pressure on the specific BamHI-DNA complex at the molecular level, molecular dynamics simulations at both ambient and elevated pressure was performed. Comparison of the simulation trajectories identified several individual BamHI-DNA contacts that are disrupted due to pressure. The disruption of these contacts can be attributed to an observed pressure-induced increase in hydration at the protein-DNA interface during the elevated pressure simulation.


Assuntos
Desoxirribonuclease BamHI/química , Ácidos Nucleicos/química , Simulação por Computador , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Pressão Hidrostática , Modelos Moleculares , Proteínas/química
10.
J Inorg Biochem ; 87(4): 175-84, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11744054

RESUMO

Formation of binary and ternary complexes in the water-soluble cytochrome P450cam (P450cam)-containing as well as in the membrane P4502B4(2B4)- and the mixed P450scc-containing monooxygenase systems was investigated in real time by the 'resonant mirror' optical biosensor method. It was shown that the inter-protein electron transfer occurs not only during complex formation but also upon random collision--as was the case with the d-Fp/d-b5 pair (2B4 system). Binary complexes may be either facilitative to electron transfer (electron-transfer complexes) or prohibitive to it (non-productive complexes). Although the binary PdR/Pd and P450cam/Pd complex formation (within the P450cam-system) as well as the binary AdR/Ad and P450scc/Ad complex formation (within the P450scc-system) does occur, the lifetimes of these complexes formed are several orders of magnitude higher than the time required for realization of a complete hydroxylation cycle. At the same time, the lifetimes of the ternary PdR/Pd/P450cam and AdR/Ad/P450scc complexes are sufficient to permit the realization of a complete hydroxylation cycle in either of these systems. For the membrane P450 2B4 system, the formation of both the binary (Fp/2B4 and 2B4/b5) and ternary (Fp/2B4/b5) complexes was registered. The lifetimes of the binary Fp/2B4 and the ternary Fp/2B4/b5 complexes are sufficient for realization of a complete hydroxylation cycle in each of them.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Técnicas Biossensoriais/métodos , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Escherichia coli , Cinética , Óptica e Fotônica , Oxirredução
11.
J Inorg Biochem ; 87(4): 215-26, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11744059

RESUMO

Using UV-Vis, resonance Raman, and EPR spectroscopy we have studied the properties of the oxygenated ferrous cytochrome P450 from Sulfolobus solfataricus, (CYP119). The recently determined crystal structure of CYP119 is compared with other available structures of P450s, and detailed structural and spectroscopic analyses are reported. With several structural similarities to CYP102, such as in-plane iron position and a shorter iron-proximal ligand bond, CYP119 shows low-spin conformation preference in the ferric form and partially in the ferrous form at low temperatures. These structural features can explain the fast autoxidation of the oxyferrous complex of CYP119. Finally, we report the first UV-Vis and EPR spectra of the cryoradiolytically reduced oxygenated intermediate of CYP119. The primary reduced intermediate, a hydroperoxo-ferric complex of CYP119, undergoes a 'peroxide shunt' pathway during gradual annealing at 170-195 K and returns to the low-spin ferric form.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Oxigenases/química , Sulfolobus/enzimologia , Proteínas Arqueais , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Modelos Moleculares , Oxigênio/química , Espectrofotometria , Análise Espectral Raman
12.
J Am Chem Soc ; 123(2): 269-78, 2001 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-11456513

RESUMO

Resonance Raman spectroscopy is applied to the cyanide adducts of cytochrome P450cam and its T252A and D251N site-directed mutants, both in their substrate-free and camphor-bound forms, to probe active-site heme structure and, in particular, interactions of the FeCN fragment with potential active-site H-bond donors. In contrast to the ferrous CO and ferric NO adducts, which form only essentially linear (slightly distorted) FeXY fragments, the spectra of the ferric CN(-) adducts provide clear evidence the for the existence of an additional, rather highly bent, conformer; that is, the cyanide complexes form both linear and bent conformers in both the substrate-free and substrate-bound forms. Formation of this bent conformer is most reasonably attributed to the presence of off-axis H-bond donors, which induce distortion on the FeCN fragment but not the FeCO and FeNO fragments, which are poorer H-bond acceptors. For all three proteins, the substrate-free form exhibits a complex spectral pattern which arises because one of the modes associated with the FeCN fragment is coupled with two heme macrocycle deformation modes. Significantly, no evidence for such coupling is observed in the spectra of the camphor-bound forms. While various unknown factors may possibly give rise to selective activation of such coupling in the substrate-free derivative, given the known facts about the active-site architecture of this enzyme, a plausible explanation is that the bent conformer is oriented toward the water-filled substrate-binding site in the substrate-free form, but oppositely, toward the proposed proton delivery shuttle, in the substrate-bound form. Sensitivity of the FeCN modes to H(2)O/D(2)O exchange in the two camphor-bound mutants, which is apparently absent for the camphor-bound native protein, is most reasonably attributed to the known presence of extra water in the active sites of these mutants.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Mutação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Domínio Catalítico , Cianetos/metabolismo , Ligação de Hidrogênio , Ligantes , Mutagênese Sítio-Dirigida , Pseudomonas putida/química , Análise Espectral Raman
13.
J Am Chem Soc ; 123(7): 1403-15, 2001 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-11456714

RESUMO

We have employed gamma-irradiation at cryogenic temperatures (77 K and also approximately 6 K) of the ternary complexes of camphor, dioxygen, and ferro-cytochrome P450cam to inject the "second" electron of the catalytic process. We have used EPR and ENDOR spectroscopies to characterize the primary product of reduction as well as subsequent states created by annealing reduced oxyP450, both the WT enzyme and the D251N and T252A mutants, at progressively higher temperatures. (i) The primary product upon reduction of oxyP450 4 is the end-on, "H-bonded peroxo" intermediate 5A. (ii) This converts even at cryogenic temperatures to the hydroperoxo-ferriheme species, 5B, in a step that is sensitive to these mutations. Yields of 5B are as high as 40%. (iii) In WT and D251N P450s, brief annealing in a narrow temperature range around 200 K causes 5B to convert to a product state, 7A, in which the product 5-exo-hydroxycamphor is coordinated to the ferriheme in a nonequilibrium configuration. Chemical and EPR quantitations indicate the reaction pathway involving 5B yields 5-exo-hydroxycamphor quantitatively. Analogous (but less extensive) results are seen for the alternate substrate, adamantane. (iv) Although the T252A mutation does not interfere with the formation of 5B, the cryoreduced oxyT252A does not yield product, which suggests that 5B is a key intermediate at or near the branch-point that leads either to product formation or to nonproductive "uncoupling" and H(2)O(2) production. The D251N mutation appears to perturb multiple stages in the catalytic cycle. (v) There is no spectroscopic evidence for the buildup of a high-valence oxyferryl/porphyrin pi-cation radical intermediate, 6. However, ENDOR spectroscopy of 7A in H(2)O and D(2)O buffers shows that 7A contains hydroxycamphor, rather than water, bound to Fe(3+), and that the proton removed from the C(5) carbon of substrate during hydroxylation is trapped as the hydroxyl proton. This demonstrates that hydroxylation of substrates by P450cam in fact occurs by the formation and reaction of 6. (vi) Annealing at > or = 220 K converts the initial product state 7A to the equilibrium product state 7, with the transition occurring via a second nonequilibrium product state, 7B, in the D251N mutant; in states 7B and 7 the hydroxycamphor hydroxyl proton no longer is trapped. (vii) The present results are discussed in the context of other efforts to detect intermediates in the P450 catalytic cycle.


Assuntos
Cânfora 5-Mono-Oxigenase/metabolismo , Cânfora/metabolismo , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Congelamento , Hidroxilação
14.
Arch Biochem Biophys ; 391(2): 255-64, 2001 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-11437357

RESUMO

A real-time optical biosensor study on the interactions between putidaredoxin reductase (PdR), putidaredoxin (Pd), and cytochrome P450cam (P450cam) within the P450cam system was conducted. The binary Pd/P450cam and Pd/PdR complexes were revealed and kinetically characterized. The dominant role of electrostatic interactions in formation of productive electron transfer complexes was demonstrated. It was found that Pd/P450cam complex formation and decay obeys biphasic kinetics in contrast to the monophasic one for complexes formed by other redox partners within the system. Evidence for PdR/P450cam complex formation was obtained. It was found that, in contrast to Pd, which binds only to its redox partners, PdR and P450cam were able to form PdR/PdR and P450cam/P450cam complexes. A ternary PdR/Pd/P450cam complex was also registered. Its lifetime was sufficient to permit up to 60 turnovers to occur. The binding of Pd to P450cam and to PdR within the ternary complex occurred at distinct sites, with Pd serving as a bridge between the two proteins.


Assuntos
Técnicas Biossensoriais/métodos , Cânfora 5-Mono-Oxigenase/metabolismo , Ferredoxinas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Sítios de Ligação , Escherichia coli , Cinética , Proteínas Recombinantes/metabolismo
15.
Biochemistry ; 40(23): 6852-9, 2001 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-11389599

RESUMO

We have performed resonance Raman and electron paramagnetic resonance (EPR) studies on the dioxygen bound state of the D251N mutant of cytochrome P450cam (oxy-P450cam) and its complex with reduced putidaredoxin (Pd). The D251N oxy-P450cam/Pd complex has a perturbed proton delivery mechanism and shows a significantly red-shifted UV-visible spectrum as observed in Benson et al. [Benson, D. E., Suslick, K. S., and Sligar, S. G. (1997) Biochemistry 36, 5104-5107]. The red shift has been interpreted to indicate a major perturbation of the electronic structure of the oxy-heme complex. However, we find no evidence that electron transfer has occurred from Pd to the heme active site of D251N oxy-P450cam. This suggests that both electron and proton transfer are perturbed by the D251N mutation and that these processes may be coupled. Three oxygen isotope sensitive Raman features are identified in the Pd complex, and occur at 1137, 536, and 399 cm(-1). These values are not significantly different from those for WT or D251N oxy-P450cam. However, a careful examination of the oxygen stretching feature near 1137 cm(-1) reveals the presence of three peaks at 1131, 1138, and 1146 cm(-1), which we attribute to the presence of conformational substates in oxy-P450cam. A significant change in the conformational substate population is observed for the D251N oxy-P450cam when the Pd complex is formed. We suggest that the conformational population redistribution of oxy-P450cam, along with the red-shifted electronic spectra, reflects a structural equilibrium of the oxy-heme that is perturbed upon Pd binding. We propose that this structural perturbation is connected to the effector function of Pd and may involve changes in the electron donation properties of the thiolate ligand.


Assuntos
Asparagina/química , Ácido Aspártico/química , Cânfora 5-Mono-Oxigenase/química , Sistema Enzimático do Citocromo P-450/química , Ferredoxinas/química , Substituição de Aminoácidos/genética , Asparagina/genética , Ácido Aspártico/genética , Cânfora 5-Mono-Oxigenase/genética , Sistema Enzimático do Citocromo P-450/genética , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons/genética , Cinética , Substâncias Macromoleculares , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/química , Isótopos de Oxigênio , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Análise Espectral Raman/métodos
16.
Protein Sci ; 10(1): 161-8, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11266604

RESUMO

The cytochromes P450 are an important class of mono-oxygenases involved in xenobiotic metabolism and steroid biosynthesis in a diverse set of life forms. Discovery of CYP-119, a P450 from the archea Sulfolobus solfataricus has provided a means for understanding nature's method of stabilizing this important protein superfamily. To identify classes of stabilizing interactions used by CYP-119, we have generated a randomized library of point mutants and screened for mutants that are less thermostable than the wild type by monitoring the characteristic Soret band in the visible region of the cell lysis. The selected mutants were characterized by differential scanning calorimetry to compare the temperatures of the melting transitions of the various mutants. The identified mutations suggested that electrostatic interactions involving salt links and charge-charge interactions, as well as contributions from other interactions such as aromatic stacking, and side chain volume of hydrophobic residues contribute to enhanced thermostability in this cytochrome P450.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sulfolobus/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Estabilidade Enzimática , Modelos Moleculares , Mutagênese , Engenharia de Proteínas , Termodinâmica
17.
J Biol Chem ; 276(15): 11648-52, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11152470

RESUMO

Unstable reaction intermediates of the cytochrome P450 catalytic cycle have been prepared at cryogenic temperatures using radiolytic one-electron reduction of the oxy-P450 CYP101 complex. Since a rate-limiting step in the catalytic cycle of the enzyme is the reduction of the ferrous oxygenated heme protein, subsequent reaction intermediates do not normally accumulate. Using (60)Co gamma-irradiation, the primary reduced oxy-P450 species at 77 K has been identified as a superoxo- or hydroperoxo-Fe(3+)-heme complex (Davydov, R., Macdonald, I. D. G., Makris, T. M., Sligar, S. G., and Hoffman, B. M. (1999) J. Am. Chem. Soc. 121, 10654-10655). The electronic absorption spectroscopy is an essential tool to characterize cytochrome P450 intermediates and complements paramagnetic methods, which are blind to important diamagnetic or antiferromagnetically coupled states. We report a method of trapping unstable states of redox enzymes using phosphorus-32 as an internal source of electrons. We determine the UV-visible optical spectra of the reduced oxygenated state of CYP101 and show that the primary intermediate, a hydroperoxo-P450, is stable below 180 K and converts smoothly to the product complex at approximately 195 K. In the course of the thermal annealing, no spectral changes indicating the presence of oxoferryl species (the so-called compound I type spectrum) was observed.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Radioisótopos de Fósforo , Radioquímica
18.
Anal Chem ; 72(17): 4212-20, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10994986

RESUMO

A novel one-step method for determining kinetic rates and equilibrium binding affinities, termed analyte gradient-surface plasmon resonance (AG-SPR) is described. A gradient maker or HPLC pump system is used to produce a gradient so that, under continuous-flow conditions, the concentration of analyte passing over the sensor surface increases linearly with time. The rate at which analyte binds to the immobilized receptors is measured by monitoring the change in the surface plasmon resonance minimum as the analyte concentration increases. Kinetic rates are determined by fitting the data to a modified version of the previously described two-compartment model (Schuck, P.; Minton, A. P. Anal. Biochem. 1996, 240, 262-272). Numerical simulations indicate that AG-SPR results in accurate estimates of both kinetic rates and equilibrium affinities regardless of the intrinsic kinetics of the interaction and can be used for systems under mass transport limitations. Simulations also indicate that AG-SPR can be used to characterize interactions that do not obey pseudo-first-order kinetics due to the presence of a heterogeneous receptor population. Experimentally, the interaction of cytochrome c with cytochrome b5 immobilized on a negatively charged monolayer has been characterized by AG-SPR, and both the specific and the nonspecific interactions were quantitatively analyzed. This new technique is advantageous over traditional SPR methods because it eliminates the need for surface regeneration and is significantly faster than traditional titration experiments.


Assuntos
Proteínas/metabolismo , Ressonância de Plasmônio de Superfície , Grupo dos Citocromos c/metabolismo , Citocromos b5/metabolismo , Cinética , Modelos Biológicos
19.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 9): 1173-5, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10957637

RESUMO

CYP119 is a cytochrome P450 with a molecular weight of 43 kDa which has been isolated from the thermophilic archaeon Sulfolobus solfataricus. This enzyme is extremely stable to high temperature and high pressure. The first crystallization and preliminary crystallographic study of CYP119 is reported here. Crystals of CYP119 were obtained by the sitting-drop vapour-diffusion method using a precipitant solution containing 20%(w/v) PEG 4000 and 0.2 M sodium thiocyanate at pH 6.4. Using synchrotron radiation, the CYP119 crystal diffracted to 1.84 A resolution. It belongs to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 86.17 (0.07), c = 221.11 (0.04) A, in which the numbers in parentheses describe the standard deviations. Assuming two molecules of the CYP119 per asymmetric unit, the calculated molar volume (V(m)) is 2.38 A(3) Da(-1). Bijvoet and dispersive anomalous difference Patterson maps show a clear peak corresponding to the haem irons. The complete crystallographically defined structure is currently in progress using MIR (multiple isomorphous replacement) and MAD (multiwavelength anomalous diffraction) techniques.


Assuntos
Proteínas Arqueais/química , Sistema Enzimático do Citocromo P-450/química , Oxigenases/química , Sulfolobus/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Cristalização , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Heme/química , Ferro/química , Oxigenases/genética , Oxigenases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Sulfolobus/genética
20.
J Biol Chem ; 275(39): 30561-5, 2000 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-10878000

RESUMO

In this report, the effects of osmotic pressure on BamHI cognate binding and catalysis were investigated and compared with a previous study on EcoRI (Robinson, C. R. and Sligar, S. G. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 2186-2191). Our observation of the dependence of binding and catalytic parameters on osmotic pressure has allowed for the comparison of hydration changes associated with site-specific DNA recognition for both endonucleases. Over a large range of osmotic pressures (pi), the dependence of BamHI on osmotic stress during cognate binding and catalysis was very different from that of the related endonuclease EcoRI. The binding of EcoRI to cognate DNA was dominated by a dehydration of the endonuclease-DNA complex, whereas binding by BamHI to its cognate sequence was accompanied by a solvent release corresponding to some 125 fewer waters. Catalytic analysis at elevated osmotic pressures indicated that both endonucleases had undergone a net hydration of the complex with BamHI displaying a much greater dependence on osmotic stress than EcoRI. Although the enzymes shared core structural motifs, comparisons of high resolution x-ray structures revealed many different secondary structural features of the complexed endonucleases. The large difference in hydration changes by both BamHI and EcoRI could be attributed to these dissimilar secondary structural features, as well as the functional differences of the two endonucleases during site-specific DNA recognition.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease BamHI/metabolismo , Água/metabolismo , Sítios de Ligação , Catálise , Desoxirribonuclease EcoRI/metabolismo , Pressão Osmótica , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...